Ch.5:Backtracking

5.1. Backtracking :General method

- Backtracking is a systematic way to go through all the possible configurations of a search space.
- In the general case, we assume our solution is a vector $\mathrm{a}=(\mathrm{a}[1], \mathrm{a}[2], \ldots, \mathrm{a}[\mathrm{n}])$ where each element a[i] is selected from a finite ordered set S[i].
. Backtracking : General Method
- We build a partial solution of length k $\mathrm{a}=(\mathrm{a}[1], \mathrm{a}[2], \ldots, \mathrm{a}[\mathrm{k}])$ and try to extend it by adding another element.
- After extending it, we will test whether what we have so far is still possible as a partial solution.

Backtracking

If it is still a candidate solution, great.
If not, we delete a[k] and try the next element from $\mathrm{S}[\mathrm{k}]$.

Backtracking Concept

- Recursion can be used for elegant and easy implementation of backtracking.
- Backtracking can easily be used to iterate through all subsets or permutations of a set.
- Backtracking ensures correctness by enumerating all possibilities.
- For backtracking to be efficient, we must prune the search space.

4.2. Eight Queen Problem (1/7)

Place 8 queens in a chessboard so that no two queens are in the same row, column, or diagonal.

A solution

Not a solution

4.2. Eight Queen Problem (2/7)

Suppose two queens are placed at position (i, j) \& (k, l) . Two queen will attack each other if $\mathrm{i}-\mathrm{j}=\mathrm{k}-\mathrm{l}$ or $\mathrm{i}+\mathrm{j}=\mathrm{k}+\mathrm{l}$ Which is same as
j-l=i-k \& j-l=k-i
$\rightarrow 64^{8}$ states with 8 queens

4.2. Eight Queen Problem ()

Some solutions from 92 Solutions

Can a new queen be placed?

Algorithm Place(k,i)
\{
for $\mathrm{j}=1$ to $\mathrm{k}-1$ do $\operatorname{if}((\mathrm{x}[\mathrm{j}==)$ or $(\mathrm{Abs} \mathrm{x}[\mathrm{j}]-\mathrm{i})=\mathrm{Abs}(\mathrm{j}-\mathrm{k}))$ then return false;
return true;
\}

All solution to the n-queen problem

 Algorithm NQueen(k, n) \{for $\mathrm{i}=1$ to n do

$\{$
if Place(k,i) then
\{

$$
\begin{aligned}
& \mathrm{x}[\mathrm{k}]:=\mathrm{i} ; \\
& \text { if(k=n) then write }(\mathrm{x}[1: \mathrm{n}]) \text {; } \\
& \text { else Nqueen }(\mathrm{k}+1, \mathrm{n}) \text {; }
\end{aligned}
$$

Analysis of 8-Queen problem

If we consider 64 position \& reject illegal configuration, no. of configuration will be $864=4,426,165,368$

If we place one queen in one row then $88=16,777,216$

If we reject the position of column, row, diagonal position whose position are guarded then no. of configuration $8!=40320$

Application \& scope of research

- To develop such an algorithm for eight queen problem whose complexity is less than 8 !

Assignment

Q.1)Explain N queen problem.
Q.2)What is attacking position of two queen?
Q.3)What is efficiency of 8-Queen problem?

