Ch.5:Backtracking

5.1. Backtracking :General method

- Backtracking is a **systematic way** to go through all the possible configurations of a search space.
- In the general case, we assume our **solution** is a vector

a = (a[1], a[2], ..., a[n])

where each element a[i] is selected from a **finite ordered set** S[i].

. Backtracking : General Method

- We build a partial solution of length k a = (a[1], a[2], ..., a[k]) and try to extend it by adding another element.
- After extending it, we will **test** whether what we have so far is still possible as a partial solution.

Backtracking

If it is still a **candidate solution**, great. If not, we **delete** a[k] and **try the next element** from S[k].

Backtracking Concept

- **Recursion** can be used for elegant and easy implementation of backtracking.
- Backtracking can easily be used to **iterate** through all subsets or permutations of a set.
- Backtracking ensures correctness by enumerating all possibilities.
- For backtracking to be efficient, we must **prune** the search space.

4.2. Eight Queen Problem (1/7)

Place **8 queens** in a chessboard so that no two queens are in the same row, column, or diagonal.

A solution

Not a solution

4.2. Eight Queen Problem (2/7)

Suppose two queens are placed at position (i,j) &(k,l) .Two queen will attack each other if i-j=k-l or i+j=k+l Which is same as j-l=i-k & j-l=k-i

 \rightarrow 64⁸ states with 8 queens

4.2. Eight Queen Problem ()

Some solutions from 92 Solutions

_	_		<u>у</u> к			
						Ϋ́́Β'
				1 B		
	3					
					25	
125						
		12				

	8		T		-		
							ТĒР
		123					
18							
						1939	
				\mathbf{r}			

12.2


```
Can a new queen be placed?
Algorithm Place(k,i)
for j=1 to k-1 do
 if((x[j==)or(Abs x[j]-i)=Abs(j-k))
    then return false;
 return true;
```

```
All solution to the n-queen problem
     Algorithm NQueen(k, n)
      ł
       for i = 1 to n do
        if Place(k,i) then
              x[k]:=i;
              if(k=n) then write(x[1:n]);
              else Nqueen(k+1,n);
```

Analysis of 8-Queen problem

If we consider 64 position & reject illegal configuration, no. of configuration will be 864=4,426,165,368

If we place one queen in one row then 88=16,777,216

If we reject the position of column, row, diagonal position whose position are guarded then no. of configuration 8!=40320

Application & scope of research

• To develop such an algorithm for eight queen problem whose complexity is less than 8!

Assignment

Q.1)Explain N queen problem.Q.2)What is attacking position of two queen?Q.3)What is efficiency of 8-Queen problem?